
Page 1 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications

Making Mac Listen:
A Voice Recognition Toolkit for Macintosh

Applications

Alma Whitten and Robert McCartney
Department of Computer Science and Engineering

University of Connecticut, U-155
Storrs, CT 06269-3155

E-mail: alma@cse.uconn.edu, robert@cse.uconn.edu

Abstract:
Commercial products now exist for the Macintosh which
can perform recognition of discrete utterances for a set of
pre-trained words. The question arises of how this
capability might be integrated into and used within an
application. In particular, how we might integrate such
capabilities into an application without radical redesign,
while maintaining its original non-voice capabilities and
appearance to the user.

We have developed and implemented a toolkit in
Macintosh Common Lisp which can be used with any
voice recognition product capable of generating an
AppleEvent with a recognized utterance as a string
parameter. The toolkit is a package consisting of
centralized processing code and a set of specialized
versions of standard MCL user-interface objects, such as
windows, buttons and other dialog items. Integrating the
 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 1

Page 2 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications

toolkit into an application allows the user to refer to any
on-screen object by a sufficient subset of its text label,
causing the object to respond as if it had been mouse
clicked. All such processing is transparent to the
application designer, who need merely substitute the
provided object types for the standard versions and
include the processing code. A level of voice recognition
capability is thus provided which is dynamically
responsive to the state of the screen display, which
requires no pretraining beyond the association of a
sufficient vocabulary of discrete words with AppleEvents,
and which allows the user to mix voice input with mouse
and keyboard at any time.

In this paper, we compare our approach to the alternative
of predefining an action for each utterance to be
recognized. We discuss the algorithms, specialized user
interface objects, and data structures used to maintain
information about the screen contents and to support
incremental recognition of on-screen objects. We discuss
the options we provide for error recovery and for
conservative vs. liberal recognition strategies, and give an
example of how voice capabilities were added to an
existing application.

Since the user interface objects involved are standard for
the Macintosh, the current implementation may also serve
as a prototype for translation into other programming
languages such as C. The hardware/software product
currently being used to recognize individual words is the
 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 2

Page 3 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications

Voice Navigator II SW from Articulate Systems, Inc.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 3

Page 4 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications

1 Introduction
When attempting to make use of a voice
recognition product which can perform adequate
recognition of discrete utterances for reasonably
large vocabularies, a first approach is to assign
recognizable words to keyboard and/or mouse
action macros. This approach, which is likely to
be the responsibility of the end user, is useful but
has several drawbacks: the number of trainable
responses is limited to the number of trained
words; effectable responses are limited to those
which can be realistically anticipated and pre-
trained; and no use is made of the semantic
nature of the heard words beyond that which
might be inherent in the user's macro assignment.

We have investigated and implemented a second
approach, which targets the application designer
rather than the end user. The approach begins
with the decision to utilize the semantics available
from

context, and does so by restricting the
interpretation of recognized words to references
to objects, such as buttons and menu items, which
are currently displayed on-screen. Reference is
presumed to be primarily by text label, but
references by name of type may also be made.
When a reference to an individual on-screen
object is identified, that object is triggered as if it
had been mouse clicked.

From the user's perspective, an application which
utilizes the Voice Toolkit will respond to speech
input by visibly marking those objects on-screen
which are associated with the entire sequence of
words heard so far, until a single object has been
identified. Figure 1 shows an example application
immediately after processing speech input of the
word "button"; the question mark display
indicates that further input is required before a
single object can be identified, and those objects
which are associated with the word "button"
either through their types or through their text
labels have been marked using italics. Once the
identification has

Figure 1 - User's perspective

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 4

Page 5 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
been made, that object is activated as if it had
been mouse clicked, and the speech processing
state is reset. If an object is activated by mouse
click or other input method at any point, the
speech processing state is also reset and all
marking of objects is removed; this allows the
user to change input methods freely.

In order to make use of our implementation, the
application designer includes the Voice Toolkit
code and uses the versions of the standard user
interface objects which we provide. These objects
are completely compatible with the original
versions, but include additional capabilities which
allow for speech recognition response as
described above. If the resulting application is
run on a system that includes speech recognition
abilities, it will respond to speech input; if the
system does not include such abilities, the
application will behave as it would have originally.

Additionally, there are a variety of options which
can be set by the application designer using a
function provided for that purpose. These options
control several aspects of the response behavior,
and can be used to tailor that behavior as
appropriate for a given application. The designer
may choose to provide the user with access to
these options as well.

2 Use of Available
Vocabulary
Given a vocabulary of n recognizable words, the
approach of defining a response macro for each
word clearly yields only n system responses. This
ratio may be improved upon if the speech
processer is designed to provide for hierarchical
responses. By hierarchical we mean processing
such that a single trained word causes different
system responses depending on the context in
which it is heard; an example of this would be the
processing of the word "page" within the pulldown
menu activated by the word "insert", as opposed
to the processing of the same word within the
pulldown menu activated by hearing "format".
This would allow for nk responses with k equal to
the number of levels of hierarchy which the
speech processer can handle. However, each
response must still be individually defined, so
although the ratio of speech training to usable
reaction is improved, the ratio of response

training to usable reaction remains one to one.
The approach we present herein requires that
each vocabulary word be matched to the reaction
of generating a specialized AppleEvent with itself
as a string parameter. All response beyond that
point is handled by the Voice Toolkit within the
application itself. Vocabulary words received as
speech input are matched to a system reaction
using the context of the types and text labels of
the currently on-screen objects. Using this
approach, the initial training of n vocabulary
words to produce n corresponding AppleEvents
allows the system to react by activating any on-
screen object which is associated with a sufficient
subset of the vocabulary to uniquely identify it
within the current screen display. Within a given
screen context, this approach allows for n!/(n-j)!
usable system reactions, where j is the realistic
bound on the word length of a text label. Taken
over a variety of screen contexts, the vocabulary
size no longer places any limitation on the number
of usable reactions to speech input.

3 Provided Options

3.1 Recognition Strategies

The Voice Toolkit allows the application designer
to modify the speech recognition behavior to the
level of conservatism most appropriate to the
application. At the most conservative level, one
designated word must be spoken to alert the
system at the start of each sequence of speech
input, and, once the sequence has been processed
to identify a reference to a particular on-screen
object, another designated word must be spoken
to confirm the presented identification before the
object will be triggered.

At a slightly more liberal level, individual objects
may be set so that, when one of those particular
objects is identified for reference, confirmation of
the identification is not required. In an
application which in general requires
conservatism, this may be appropriate for check-
boxes and radio buttons, for which triggering is
unlikely to have any irrevocable consequences.

If this degree of conservatism is unnecessary, the
confirmation step may be done away with entirely.
Likewise, the alerting step may also be done away
with so that speech input will always be accepted

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 5

Page 6 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
for processing; this may be done in combination
with any of the choices of confirmation strategy.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 6

Page 7 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
The designation of the words to be used in the
above strategies is also under control of the
application designer; for details refer to the
sections on public functions and on object
reference processing.

3.2 Error Recovery
The Voice Toolkit provides an optional method for
attempting to recover from a mis-identified word
within a sequence of speech input. When this
option is enabled and there is no on-screen object
which is associated with all of the current
sequence of speech input, the system utilizes its
previous experience of successful recoveries to
construct a set of guesses as to which is the
intended object. These guesses are then
presented to the user singly in order of expected
probability until either the user validates a guess
as correct or the set of guesses runs out. This
process is described in detail in the section on
guessing and learning behavior later in this paper.

4 Implementation
Overview
The Voice Toolkit is a package consisting of the
Voice Handler, which is responsible for receiving
and processing the heard words according to the
option parameter settings and the data it
maintains about the objects currently displayed
on-screen, and the specialized voice-aware object
versions, which communicate with and respond to
the Voice Handler as needed.

4.1 Voice Handler
4.1.1 Interface to Voice Recognition
Product

The Voice Handler defines a special AppleEvent
handler which allows it to accept recognized
words for processing as string parameters to
AppleEvents of type aevt and id hear. It can
therefore be used with any voice recognition
product which is capable of generating such
AppleEvents. More detailed information on how
to set this up is given in the appendix to this
paper.

4.1.2 Data Structures

The Voice Handler maintains several categories of
data structures. The first group consists of the
parameters which reflect the user's or designer's
choices from the options which are provided to
control the behavior of the Voice Handler's
interaction with the user. These are described as
follows.

mark-method Specifies the method which is
used to indicate to the user which on-screen items
are currently candidates for reference according
to the words heard so far. Currently the options
available are :ITALIC, :BOLD, or any of the
standard MCL color values such as *blue-color*
or*red-color*. The default value is :ITALIC.

start-word The recognizable word which is
used to alert the Voice Handler for a sequence of
speech input to reference an object. If the Voice
Handler is already in an alert state, this word will
be handled like any other. If this parameter is set
to nil, the Voice Handler will always be in an alert
state. The default value is `"LISTEN''.

fire-word When the Voice Handler has
identified a sequence of speech input as a
reference to a particular on-screen object,
speaking this recognizable word confirms the
reference and causes the Voice Handler to trigger
that object as if it had been mouse clicked. If the
particular reference has not yet been identified,
this word is handled like any other. If this
parameter is set to nil, the Voice Handler will
trigger the referenced object as soon as it can
make the identification, without waiting for user
confirmation. After triggering the referenced
object, the Voice Handler resets to either an
unalert state or a refreshed alert state, depending
on the value of *start-word* as described above.
The default value of *fire-word* is "GO''.

cancel-word This word is used to reset the
Voice Handler, canceling processing of the
current sequence of speech input. The reset takes
place as in the description given for *fire-word*
above. This word will always be processed in this
context; it can never be used to reference an
object. The default value is "FORGET IT'', to be
processed as one word.

guessing This is a boolean value which
enables or disables the Voice Handler's ability to

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 7

Page 8 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
offer guesses to correct for misheard words.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 8

Page 9 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
next-guess If the Voice Handler's guessing
ability is enabled, then at the point in processing a
sequence of speech input where a word has been
misheard and the Voice Handler is offering
guesses as to the object to be referenced, this
word is used to tell the Voice Handler to offer its
next guess. At all other times this word is
processed like any other. The default value is
`"NEXT''.

The second group is made up of variables which
are used to record and maintain the current state
of matching a speech reference to an on-screen
object. These are:

attention This variable is a boolean value
which determines whether or not the Voice
Handler is currently alerted for a sequence of
speech input.

wordlist This is a list of the words
recognized so far in the current sequence of
speech input.

marked This is a list of the on-screen objects
which are currently candidates for reference
according to the current sequence of speech
input, and which have been marked for the user's
notice accordingly using the method specified by
the *mark-method* parameter as previously
described.

fixes When a word has been misheard and
the Voice Handler is exercising its guessing
ability, this variable holds a list of the current
guesses, ordered by decreasing probability
according to the Voice Handler's previous
experience.

Third, the following group of parameters holds
information about the objects currently displayed
on-screen:

screen This variable identifies the window
which currently has input focus, unless the
window is not a Voice Window, in which case it is
nil.

wordtable This is a hash table which, given a
heard word as a key, provides a list of the objects
currently on-screen which contain that word in
their text labels or in their object typenames.

Fourth, the following variable is used for the
learning and guessing option:

twintable A hash table which maps an
assumed misheard word to the accumulated data
from previous successful assumptions of
mishearings of that word.
Lastly, this variable is used to suppress the Voice
Handler's communication with the user until it
has been confirmed that the system is set up to
handle voice input:

voice-system Initialized to nil, this variable is
set to t as soon as the application receives a
speech related AppleEvent.

4.1.3 Object Information Management

The data structures which provide information
about the voice-type objects currently displayed
on-screen, *screen* and *wordtable*, are
updated in response to notification provided by
the voice-type objects themselves. This updating
takes place whenever a window gains or loses
input focus, or when there is a change to the
subviews of the window which currently has input
focus. If a notification to update occurs during
the processing of a sequence of speech input, the
Voice Handler's processing state is reset.

4.1.4 Object Reference Processing

The Voice Handler allows the user to trigger a
user interface object by means of a sequence of
speech input rather than by a mouse click. As
each heard word is processed, on-screen objects
which are associated with the entire current
speech input sequence are marked for the user's
notice. When enough words have been heard to
identify one particular object, then that object is
activated as if it had been mouse clicked, and the
Voice Handler is reset.

Processing a sequence of speech input begins
with the placing of the Voice Handler in an
alerted, waiting-for-input state. If *start-word*
is nil, this is done automatically whenever the
Voice Handler is reset; otherwise reset places the
Voice Handler into theunalert state until it
receives input of the *start-word*.

While in the waiting-for-input state, the Voice
Handler maintains a set S of those on-screen
objects which have been marked using the
specified *mark-method* to identify them to the
user as current candidates for reference. Each
time the Voice Handler is placed into the waiting-

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 9

Page 10 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
for-input state, the set S begins as empty. When
the first regular speech input word wi is received,
the Voice Handler accesses the *wordtable* and
retrieves the set Ri of currently on-screen objects
associated with that

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 10

Page 11 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
word. These objects are then marked using the
specified *mark-method*, andS is set equal to Ri .
As each successive speech input word wj is
received, its set Rj of associated objects is
retrieved, and S is set equal to the intersection of
S and Rj, unmarking the eliminated objects
accordingly. The Voice Handler remains in this
state and processes input in this fashion until
either the *cancel-word* is heard, in which case
the Voice Handler is reset, or it becomes true that
S no longer contains more than one object.

At this point, if S contains exactly one object,
then that object is presumed to be the object of
reference, and the Voice Handler enters its
success state. If the value of *fire-word* is nil
or if the object is set as volatile, the object is
activated as if it had been mouse clicked, and the
Voice Handler is reset. If the object is not volatile
and *fire-word* is not nil, then the Voice
Handler waits for user validation in the form of
input of the *fire-word*, or user rejection by
input of the *cancel-word*.

On the other hand, if S contains no objects, the
behavior of the Voice Handler depends on
whether guessing is enabled. If guessing is not
enabled, the Voice Handler enters the failure
state and waits for user input of the *cancel-
word* in order to reset. If guessing is enabled, the
Voice Handler enters the guessing state and
generates a sorted list of plausible guesses, which
process is described in detail later in this paper.
The generated guesses are presented to the user
one at a time by marking the object associated
with the guess and waiting for user reaction.
When presented with a guess, the user has the
following options: input the *fire-word* to
validate the guess as correct and process as from
the success state; input the *cancel-word* to
reset the Voice Handler and start over; input
next-guess to be presented with the next guess
on the list; or input another regular word, which
will cause a new, more precise list of guesses to
be generated and presented. When the Voice
Handler has no more guesses to present, it goes
into the failure state as described above.

Should any object be activated by another method
such as a mouse click or keypress during the
process described above, the Voice Handler will
be reset.

4.2 Voice-Type Objects
The specialized object versions fall into three
categories of responsibility. First are those top
level objects which are not themselves referenced
by speech input, but instead act as the manager
for the voice-type objects they contain; in the
current implementation only Voice Windows are
top level voice-type objects. They are responsible
for notifying the Voice Handler whenever there is
a change to the contents of the screen display.
Next are the basic voice-type objects, such as
Voice Buttons and Voice Check-Boxes, which do
not contain other voice-type objects; these
respond to commands from the Voice Handler in
order to process the speech input sequence.
Finally, there are special cases which do not
interact directly with the Voice Handler at all,
represented in our implementation by Voice
Sequences, which are contained in Voice Windows
but act only to manage the Voice Slots they
contain.

4.2.1 Top Level Voice-Type Objects

Top level voice-type objects notify the Voice
Handler when they receive input focus, and then
cause all of their voice-type subviews to identify
themselves to the Voice Handler so that the
wordtable can be updated. The only other
point at which they interact directly with the
Voice Handler is when they close or hide.

4.2.2 Basic Voice-Type Objects

The Voice Handler interacts primarily with the
basic voice-type objects, which include Voice
Buttons, Voice Radio Buttons, Voice Check-Boxes
and Voice Slots. A basic voice-type object must
provide the following methods:

identify(object) This method is used by
higher level voice-type objects to cause the basic
voice-type objects they contain to identify
themselves to the Voice Handler as currently
displayed on-screen.

text(object) Returns a text string containing
all words to be associated with the object.

mark(object) Modifies the text display of the
object on-screen according to the current value of

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 11

Page 12 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
mark-method, to inform the user that the object
is a candidate for reference according to the
current sequence of speech input.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 12

Page 13 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
unmark(object) Returns the text display of the
object on-screen to its original mode.

select(object) Triggers the action that the
object would perform in response to a mouse
click.

In addition to providing the above functions, basic
voice-type objects are required to inform the Voice
Handler whenever they are triggered by any
method, in order that the Voice Handler may reset
itself.

Basic voice-type objects contain an additional
attribute which identifies them as being volatile
or not. Objects which are volatile will be
triggered by the Voice Handler as soon as the
reference is identified, without waiting for user
confirmation, regardless of whether *fire-word*
is nil. This attribute may be set by the application
designer using the keyword :volatile t within
make-dialog-item. Voice Slots inherit this
attribute from the Voice Sequence which created
them. Voice Radio Buttons and Voice Check-Boxes
are volatile by default; all of the other basic
voice-type objects are not.

4.2.3 Hybrid Voice-Type Objects

A hybrid voice-type object such as a Voice
Sequence never interacts directly with the Voice
Handler. Instead, its responsibility is to spawn a
Voice Slot for each of its individual parts, and to
pass along any identify command it receives to
each of its Voice Slots. The standard methods for
the Voice Sequence all return values as if the
Voice Slots were not present, and the Voice Slots
interact with the Voice Handler as individual basic
voice-type objects.

5 External Aspects

5.1 Public Functions
Other than the specialized object types and
corresponding versions of the standard methods
on those objects, the Voice Toolkit provides only
two functions to be used by the application
designer. The first of these functions, set-voice-
handler, is used to set the behavioral option
choices at application start-up or at any time
thereafter. To accomplish this, the function may

be invoked with any of the following keyword
arguments:

:alert-on Sets the value of *start-word* to
the input string.

:cancel-on Sets the value of *cancel-word* to
the input string.

:accept-on Sets the value of *fire-word* to
the input string.

:next-guess-on Sets the value of *next-guess*
to the input string.

:guessing-p Sets the value of *guessing* to t
or nil.

:mark-method Sets the value of *mark-method*
to the method specified.

The arguments provided with the above keywords
are checked for validity, and any invalid argument
produces an immediate error. This validity
checking includes the fact that *fire-word* may
not be set to nil while guessing is enabled and
vice versa, since the user must be able to validate
a presented guess.

The second function, close-voice-handler,
which has no arguments, is used to shut down the
Voice Handler. It is only necessary to call this
function if the guessing and learning option has
been enabled and it is desired to save what has
been learned during the current use of the
application.

5.2 Interaction with User
The tools with which the Voice Handler
communicates with the application user are the
mark-method and the Voice Flag. The *mark-
method* is used to visibly indicate to the user
each on-screen object which is associated with all
of the words in the current speech input
sequence, allowing the user both to visually
determine which spoken word would next be most
appropriate with greater ease, and also to verify
that an error in the speech recognition has not
occurred. The Voice Flag is a small floating
window which indicates the current processing
state of the Voice Handler by the display of a
variety of corresponding symbols, and appears
whenever a Voice Window currently has input

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 13

Page 14 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
focus. The five possible processing states
described in the

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 14

Page 15 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
section on object reference processing are
indicated by the five symbols shown in Figure 2.

Figure 2 - Voice Flag States

The five Voice Flag displays shown in Figure 2 are
explained as follows:

blank Corresponds to unalert state, waiting to
hear *start-word*.

blue question mark Indicates waiting-for-
input state. Expects to hear either another
regular input word, or *cancel-word*.

red circled question mark Indicates guessing
state: the sequence of speech input received does
not match any on-screen object, the guessing
option is enabled, and the currently marked on-
screen object represents the Voice Handler's
offered guess. Expects to hear *fire-word*,
next-guess or *cancel-word*, will also accept
additional regular input words in order to narrow
down guesses.

yellow smiley face The success state, meaning
that the currently marked on-screen object has
been identified as the object referenced by the
current sequence of speech input, and *fire-
word* is not nil. Expects to hear *fire-word* or
cancel-word.

green unhappy face This is the failure state.
The sequence of speech input received does not
match any on-screen object, and either the
guessing option is disabled or the Voice Handler
has run out of guesses to offer. Waiting to hear
cancel-word.

6 Guessing and
Learning
6.1 Behavior
When the guessing option is enabled by calling
set-voice-handler with keyword :guessing-p t,
the Voice Handler will attempt to recover from

misheard words by guessing at plausible
corrections for one of the words in its speech
input sequence. If it should be the case that more
than one word in the speech input sequence was
misheard, then the Voice Handler will not be able
to recover and the user will need to use the
cancel-word and start over.

Given a speech input sequence of n words which
cannot be matched against any object currently
on-screen, the Voice Handler takes one of the
heard words, assumes that it was mis-heard and
that the remaining n-1 words were heard
correctly, and retrieves the list of objects which
might be referenced by the n-1 assumed correct
words. This is done for each of the n heard words
in turn, appending the retrieved lists of objects to
create a list of potential guesses. This list
necessarily contains no duplicates, since in order
for it to do so there would have to be an on-screen
object which was a candidate for reference by two
different n-1 size subsets of an n size set of
words, and, since the union of those subsets
would be same as the set itself, the object would
be a valid candidate for reference by the entire
speech input sequence and the Voice Handler
would not be guessing.

The generated list of guesses is then sorted in
decreasing order of weight according to the Voice
Handler's previous experience. The weight of a
guess is calculated as follows: first, the set X of
words which might be the correct identifications
of the assumed misheard word w is isolated by
taking the set of words associated with the
guessed object and removing those words which
are accounted for by the words in the speech
input sequence which were assumed to be heard
correctly. Then, w is used as an index into the
twintable to retrieve a set Y of words and
associated data which represents the experience
gained from previous user-validated guesses for
which w was the word assumed mis-heard.
Finally, the guess weight is generated by summing
and normalizing the weights of those words in Y
which are also in X , where the weights are
derived from the data representing previous
experience.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 15

Page 16 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
The sorted list of guesses is then presented to the
user, one guess at a time as described in the
earlier section on object reference processing. If
the user validates a presented guess by speaking
the *fire-word* then, for the word w and sets X
and Y of words previously mentioned, the
accumulated experience for mis-hearings of w as
represented in Y is updated by increasing the
weight and count associated with each word in X
by, respectively, 1/m where m is the size of X , and
incrementing by one. Words in X which were not
previously present in Y are added with weight and
count initialized to zero before being included in
the update.

As an example of this process, consider a situation
where the user wishes to reference the item
labeled "Tech Report" in Figure 1, and has spoken
first "report", and then "tech" to distinguish
between the two reports. Assume that the system
has identified the word "report" correctly but has
misheard "tech" as "check". The Voice Handler
then retrieves the set of on-screen objects which
can be referenced by "report", which consists of
the objects labeled "Tech Report" and "expense
report", and the set of on-screen objects which
can be referenced by "check", which is the empty
set. The set of possible guesses therefore now
contains the objects labeled "Tech Report" and
"expense report".

This set of guesses now needs to be ordered. For
both of the generated guesses, "check" is the
word assumed misheard. The *twin-table* is
accessed and all information about previous
mishearings of "check" is retrieved. The weight of
the guess "Tech Report" is set equal to the weight
accumulated by
previous experiences of mishearing "check" for
"tech", and the weight of the guess "expense
report" is likewise set according to previous
experience of
mishearing "check" for "expense". Presumably
over
time the former will have accumulated more
weight, and the guess of "Tech Report" will be
presented to the user first. If the user validates
the guess by speaking the *fire-word*, the
experience weight for mishearings of "check" for
"tech" will be incremented for future reference.

6.2 Representation and
Storage

The accumulated error recovery experience is
stored in the *twintable* such that word is
keyed to a list of tuples of the form <wordi ,
weighti , counti> , in which wordi has been a
candidate as the correct identification of the
speech input misheard as word and weighti and
counti are as described in the previous section on
behavior. The mishearing of wordi as wordj and
the mishearing of wordj as wordi are treated as
completely separate events; no assumption is
made about the relatedness of their probabilities.

This information is stored in a file named
Experience File , and is loaded into the
twintable at whatever point the guessing
option is enabled. If the experience file is not
present, the accumulation of experience begins
again from scratch, and an experience file is
created when the new experience is saved at
application shut-down. This allows the user to
clear the accumulated experience simply by
removing the experience file, or to maintain
different sets of experience for different users by
providing the appropriate experience file for each.

6.3 Additional Capabilities
An interesting byproduct of the Voice Handler's
ability to use experience to identify and deal with
homonyms arises from the fact that the Voice
Handler's accumulated experience deals only with
whether the word that was misheard could be
corrected by substituting a different word, at a
level completely ignorant of the shape or sound of
the words involved. Because of this, the Voice
Handler, given appropriate user reinforcement of
its guesses, is equally able to learn to guess at
corrections involving synonyms of heard words.

As an example of this, our testbed implementation
exhibits a tendency to mishear the word "cut'' as
"put''. After a period of use with guessing
enabled, the Voice Handler begins to assign a high
weight to guesses which involve "cut'' as a
candidate for the correct identification of the
word misheard as "put''. Now suppose an input
word is correctly identified as "slice''. If the
speech input sequence contains other words
which are associated with the object associated
with "cut'', then that object will be presented to
the user as a guess. If the user validates the
guess, then "cut'' will be recorded as a possible
correct identification of "slice'', and, given

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 16

Page 17 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
continued user reinforcement, will continue to
accumulate weight as such.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 17

Page 18 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications

7 Efficiency Issues
Integration and use of the Voice Toolkit adds
processing cost to an application at three times:
at application load and shut-down; when a new
Voice Window receives input focus; and when
voice input is being processed. As far as the first
is concerned, the code involved is not lengthy, and
the time required to load it should not be a
noticeable addition to any but very small
applications. Should the learning/guessing option
be enabled, the initial loading and final saving of
the experience data are each theoretically O(n2)
for a vocabulary of n recognizable words, since
at most each of the n words could have previous
experience of being matched against the
remaining n-1 words, creating a table of size n(n-
1) .

When a Voice Window receives input focus, the
processing involved is that of identifying the
currently displayed objects to the Voice Handler.
The controlling factors here are the number j of
currently displayed objects and the number k of
words associated with them. It is clear that both
of these factors have fairly small realistic bounds,
enforced by limited screen display area, and since
the updating of the *wordtable* involves k hash
table accesses each with traversal of a list of
length at most j , this can effectively be
considered constant time. For a reasonably
crowded Voice Window running on a Quadra 700,
there is no noticable delay time. The remaining
processing is all directly related to the handling of
speech input; should no speech input be received,
the only extra processing which will take place is
the reset notification to the Voice Handler
whenever a voice-type item is mouse clicked.

Handling of speech input involves the following
processing for each heard word: the hash table
access to retrieve the set of objects associated
with that word; the set intersection of the
retrieved set with the set of currently marked
objects; and the unmarking of the objects no
longer present in the resulting set. If the word is
the first in the sequence, then processing instead
involves only the hash table access and the
marking of each object present in the retrieved
set. The highest complexity aspect of this
processing is the set intersection, which is O(n2)
in the set size, but the set size can not be larger
than the number of objects which can be
realistically displayed in limited screen space.

Also, the marking and unmarking processes,
which require graphics output, effectively
overshadow the other aspects of the processing
time.

8 Example Application
The application used as a testbed in the
development of the Voice Toolkit was COOKIE [2],
a case-based planner which operates in the
domain of meal planning and preparation.
COOKIE's user interface interacts with the user
through a series of windows containing a variety
of predefined menus and buttons in order to
determine a set of goals for a desired dinner and
select a case which satisfies those goals. When
this is accomplished, COOKIE turns control over
to DEFARGE [3], its execution monitor, which
leads the user through the step-by-step
preparation of the meal in real time.

DEFARGE's user interface contains displays of the
actions to be performed immediately, the actions
which are waiting for the result of some test to be
positive, and the tests themselves. The user
interacts with DEFARGE by clicking on the actions
as they are performed and the tests as the
corresponding results become positive. Tests and
actions are displayed as text descriptions, as
shown in Figure 3.

As an application, COOKIE is well suited for
utilization of voice input, since its use involves
primarily interaction with dialog-items, with very
little keyboard input required. However, the first
approach of defining mouse action macros as
voice responses, as we described in our
introduction, is of little use in this instance.
COOKIE's preliminary stage involves a large and
varied number of buttons and scrolling menus;
predefining a command for each possible choice
would be extremely tedious. Even worse,
DEFARGE's scrolling menus have dynamically
changing contents according to the recipe being
executed, so it is not possible to predefine voice
responses for the menu items.

COOKIE and DEFARGE both use their own
subclasses of several of the standard user
interface objects; with use of the Voice Toolkit
these become subclasses of the voice-type
versions. At this time the trained vocabulary
contains about 80 words. As COOKIE's

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 18

Page 19 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
development has not yet moved into a phase
involving steady realistic use, it remains to be

seen which of the Voice Handler option
configurations will be most appropriate.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 19

Page 20 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications

Figure 3 - Defarge waiting for user validation of italicized item

Validity as a Prototype
9.1 Other Languages and
Platforms
The approach presented in this paper should be
equally usable in any object-oriented, window-
based, event-handling user interface. Since this
describes the X Windows system for UNIX and the
Windows system for DOS as well as the Macintosh
user interface, the validity of the approach should
be broad.

Transferring the functionality of the Voice Toolkit
to another language and/or platform would
involve the following:

* Defining a special event type with a string
parameter, and a corresponding event handler for
that type.

* Creating a package of Voice Handler code to
maintain the data structures and interact with the
user as described.

* Creating specialized subclasses of the user
interface objects which respond to the Voice
Handler while maintaining compatibility with the
original versions.

9.2 Aspects Specific to MCL
The implementation of AppleEvent handlers
within MCL enforces two functionality constraints
which

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 20

Page 21 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
may or may not be present in other languages.
First, AppleEvent handlers are required to return
normally; any attempt to throw past them is
blocked at run-time. This means that a call to
return-from-modal-dialog made as the result of
activation of an object by voice will be blocked,
unless that activation is performed after the
return from the AppleEvent handler.

Second, AppleEvent handlers will not process
newly arriving AppleEvents until the current call
to the AppleEvent handler has returned. Should
the activation of an object by voice result in a call
to modal-dialog, within the AppleEvent handler,
then AppleEvents generated by further voice
input will queue up until the modal dialog and
AppleEvent handler return.

Solving both of these problems requires that the
activation of the object be performed after the
AppleEvent handler has returned. This is
accomplished by making use of the MCL system
variable *eventhook* which contains a list of
functions of no arguments. Each time MCL
receives an event (not an AppleEvent), each
function in the *eventhook* list is called until
one returns a non-nil value. When the Voice
Handler wishes to activate an object, it inserts the
function which is to be called at the beginning of
the *eventhook* list. The AppleEvent handler is
then free to return, regardless of the behavior of
the function to be called, and the function will be
called at least as soon as the next clock tick event
arrives. Since the MCL handling of regular events
does not involve the problematic qualities of the
AppleEvent handler, this approach removes both
of the problems described.

10 Further Research
Issues
10.1 Other User Interface
Objects
Common user interface objects not implemented
in the current Voice Toolkit include table-dialog-
items as well as the menu-items and pull-down-
menus associated with the menubar. The table-
dialog-items were not included because they are
not provided as a direct implementation with MCL
2.0, and therefore an application designer who

has used them will have developed an
individualized version, without knowledge of
which it would be risky to attempt to maintain
compatibility for a voice-type version.

Implementing voice-type versions of the pull-
down-menus and menu-items was investigated;
however, although methods seem to exist which
provide access to the functions those objects use
to respond to mouse clicks, they are
undocumented within the commercial release of
MCL 2.0. More complete information about those
methods would be necessary before
implementation of the corresponding voice-types
could proceed. It may be noted, however, that
Voice Menu Items would fall into the category of
basic voice-type objects, and Voice Pull-Down
Menus should be hybrid voice-type objects.

10.2 Summarizing Experience
Regarding the storing of experience data, two
issues might be addressed. First, as the
implementation currently stands, the count of
occasions on which a word may have been the
correct identification for a mis-heard word has no
upper bound in unbounded time. It may be the
case that, in realistic use, this will never become a
problem, but it might be desirable to enforce
some large arbitrary upper bound at which the
Voice Handler no longer bothers to collect further
experience.

Second, rather than allow entries in the
twintable to grow to large sizes which contain
several heavily weighted values and many
minimally weighted incidental values, each of
which will be considered whenever a guess is
generated, one might consider a mechanism to
identify and prune incidental values from the
table.

11 Related Work
Research in speech recognition has so far tended
to focus on the mechanics of matching sound
patterns, rather than on the utilization of the
resulting ability. A search for relevant
publications yielded only the work of the Speech
Research Group within the Media Laboratory at
MIT, which has developed systems called Xspeak
and Xspeak II to provide a speech interface to X
Windows [4]. The capabilities of these systems

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 21

Page 22 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
are very similar to that of the Voice Control
software provided with the Voice Navigator II, and
fall into the category we have described as a first
approach.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 22

Page 23 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Xspeak allows the user to navigate among
XWindows by speech input, and requires the
specific training of a name to be associated with a
particular window. Xspeak II extends to allow the
user to interact with the contents of the window
as well. Using Xspeak II, a user can activate
objects such as buttons through speech input;
however, the activation is performed by specifying
a location within the current window and actually
producing a mouse event at that location in order
to cause the application to respond. This retains
the positional reference approach which is
intuitively appropriate when a pointing device is
in use; rather than the more language oriented
approach we have chosen to use as more
appropriate to speech input.

12 Conclusions
The use of an approach for speech input
processing which is based on direct text label
association rather than on macro assignment and
object screen position is more natural to the
medium of voice recognition and is feasible in
terms of computational overhead and system
response time. Making use of the object-oriented
nature of window-based user interfaces allows
this approach to be implemented fairly simply and
integrated into applications with a minimum of
required modification. Furthermore, allowing
programmers to make use of existing speech
recognition products at a level which is not
specific to the particular device in use is more
consistent with the way in which other input
devices such as mouse and keyboard are used,
and therefore likely to be more practical and
useful.

Acknowledgements
This work was supported in part by the National
Science Foundation under grant IRI-9110961.
Thanks also to Bill St. Clair at Apple for filling us
in on the details of AppleEvent handler behavior,
to Dana Morgan at Articulate Systems for
providing us with further information on Voice
Extensions, and to Karl Wurst for setting us
straight on so many practical details.

References
[1] Articulate Systems, Inc., Cambridge, MA.
 Voice Navigator Owner's Guide , rev. b edition,
 1990.

[2] Robert McCartney. Reasoning directly from
 cases in a case-based planner. In Proceedings
of
 the 12th annual conference of the Cognitive
 Science Society , pages 101-108, Cambridge,
MA,
 July 1990.

[3] Robert McCartney and Karl R. Wurst.
 DEFARGE: a real-time execution monitor for
 a case-based planner. In Proceedings of the
 DARPA Workshop on Case-Based Reasoning ,
 pages 233-244, Washington, DC, 1991.

[4] Chris Schmandt, Mark S. Ackerman, and
Debby
 Hindus. Augmenting a window system with
 speech input. In IEEE COMPUTER ,
 pages 50-56, August 1990.

Appendix
A Directions for Application
Designer
The Voice Toolkit will be provided for inclusion on
the MacHack '93 Proceedings Disk, and can also
be had by contacting the authors at their E-mail
addresses.

IMPORTANT: in the changes described below, be
aware of the following:

1. Types may be changed to voice types or not as
the designer sees fit; however, voice-type dialog
items must be in voice-type windows if they are to
respond correctly.

2. Voice-type objects are compatible with their
standard versions for inheritance purposes.
Specialized versions will inherit all voice

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 23

Page 24 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
capabilities and cooperate with the Voice Handler
accordingly.

3. When changing types, change only direct
references such as in calls to make-instance,
defclass, make-dialog-item, and type-of. Do

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 24

Page 25 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
not change function names; window-show does
NOT become voice-window-show.

Make the following changes to integrate the Voice
Toolkit into an application:

* Load the Voice Toolkit within the application.

* Change references to type window to voice-
window.

* Change references to type button-dialog-
item to voice-button.

* Change references to type radio-button-
dialog-item to voice-radio-button.

* Change references to type check-box-dialog-
item to voice-check-box.

* Change references to type sequence-dialog-
item to voice-sequence.

* Change calls to return-from-modal-dialog
which are made for Voice Windows to voice-
return-from-modal-dialog.

* Add calls to set-voice-handler to tailor
behavior as appropriate to the application.

* If the guessing option will be enabled, a call to
close-voice-handler should be added at
application shut-down so that gained experience
will be saved.

B Speech Recognition
Product Set-Up
B.1 General Requirements

In order to properly interface a speech
recognition product to the Voice Handler, the
speech recognizer must be set up so that, for each
word which is to be recognizable, speech input of
that word causes an AppleEvent to be generated
with application signature CCL2 (Macintosh
Common Lisp 2.0), type aevt, id hear, and the
recognizable word as a string parameter. This
assumes that the application will be running
under MCL 2.0, in the case of a different MCL or a
standalone application, the application signature
should be modified accordingly.
B.2 Directions for Voice
Navigator II or SW
Within the Language Maker utility [1], each word
must be associated with a Voice Extension
command. This is accomplished by choosing
Voice Extension from the provided menu, then
modifying the arguments within the parentheses
as shown:

@VXTN(GEVT,CCL2,aevt,hear ---- TEXT word)

The arguments are explained as follows:

GEVT Specifies the Generate AppleEvent Voice
Extension.

CCL2 The application signature of MCL 2.0.

aevt The type of the generated AppleEvent.

hear The id of the generated AppleEvent.

---- A "direct object'' involved in parameter
passing.

TEXT The type specification for the parameter.

word The text string of the recognizable word.

 Making Mac Listen: A Voice Recognition Toolkit for Macintosh Applications
Page 25

